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Design of a Gain-Scheduled Flight Control System
Using Bifurcation Analysis

Thomas Richardson,* Mark Lowenberg,” Mario diBernardo,* and Guy Charles®
University of Bristol, Bristol, England BS8 ITR, United Kingdom

A method for identifying regions of instability in closed-loop systems has been developed for flight dynamics
applications. This forms a novel approach in which a surface of equilibria is generated in the region of interest
as the influence of the control system is increased. In this way, the creation and destruction of equilibria in the
controlled system can be easily found and visualized. This systematic approach allows the stability of the closed-
loop system to be directly related to that of the open loop. Results are given for a highly nonlinear aircraft model
and demonstrate the power of a combined analytical and graphical approach to control system synthesis.

I. Introduction

N recent years, there has been significant interest in the ap-

plication of nonlinear analysis methods to flight dynamics
problems.! 3 These methods have been applied to many fields to pre-
dict and describe the evolution of nonlinear systems over wide vari-
ations in parameters, for example, in voltage collapse* and macroe-
conomic systems.> The application to flight dynamics was initiated
by Mehra et al. in 1977.% However, the vast majority of all published
work has been for the bifurcation analysis of unaugmented aircraft,
or aircraft with simple stability augmentation systems.

Feedback control systems are used to augment the response of the
aircraft in regions where the open-loop behavior is undesirable. The
ongoing requirement to increase the performance of modern aircraft
necessitates stretching the flight envelope into highly nonlinear re-
gions, such as those at a high angle of attack. One simple approach
to improve the aircraft response is to use a fixed linear controller
generated at a given operating point. In many cases, however, this is
insufficient, and the aircraft may still display unacceptable handling
qualities. The logical extension of this approach is to schedule the
control system gains.

Gain scheduling is a practical method of coping with known plant
nonlinearities. Here we define gain scheduling as the process of vary-
ing a set of controller coefficients according to the current value of
a scheduling signal. Conventional gain scheduling is carried out by
taking linearizations of the nonlinear plant at a few selected points
in the system’s operating range. Subsequently, either the model lin-
earizations or resultant controller gains are scheduled between the
design points by using simple interpolation methods. Recently, gain-
scheduling and linear parameter-varying (LPV) systems have been
the basis of a great deal of research,” and the application of gain
scheduling to nonlinear systems continues to present interesting re-
search problems.

Continuation methods are the established tools that underlie the
application of bifurcation analysis to nonlinear systems; they are
path-following algorithms that trace out solutions to nonlinear alge-
braic equations, in this case steady states of the open- or closed-loop
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flight dynamics model. We believe that there is great deal of poten-
tial in the use of continuation methods in the design and analysis of
gain-scheduled feedback control systems. They allow us to address
systems with significant nonlinearity and in particular multivalued
steady states. The essence of this paper is to consider the application
of a gain-scheduled state feedback controller to an aircraft. Contin-
uation algorithms are used for two purposes within this paper: 1) to
create pseudocontinuous gain schedules throughout a wide oper-
ating region and 2) to create surfaces of state equilibria that show
changes in the global behavior of the system ranging from the open-
loop to the closed-loop configurations.

The first step in this approach is to create pseudocontinuous gain
functions that satisfy the design criteria at equilibrium throughout
the desired operating region of the nonlinear system. Given suf-
ficient control authority, these allow the dynamic response of the
desired branch of equilibria to be specified. This paper formalizes a
continuation approach to gain scheduling using standard feedback
control design terminology.

The second step is to determine the global implications of this
gain-scheduled controller. A novel approach is adopted in which
three-dimensional bifurcation surfaces of equilibria are found as
both the reference signal and the controller gains are varied. This
powerful technique illustrates graphically the influence of the con-
trol system and is shown to be invaluable in the evaluation of the
global stability of the system. These bifurcation surfaces can be used
to indentify undesired attractors within the closed-loop system. The
creation of equilibrium surfaces in terms of the variation in control
system gain is an entirely new concept in aircraft controller design
and allows a tradeoff between local and more global properties of
the closed-loop system.

These methods are demonstrated using a highly nonlinear air-
craft model, the hypothetical high angle of incidence research model
(HHIRM).® Aircraft dynamics are complex, incorporating nonlin-
earities as a result of many factors such as inertial coupling be-
tween the different degrees of freedom and aerodynamic forces and
moments.’

An important problem is to understand and characterize the ro-
bustness of the control strategy to unwanted perturbations, model
uncertainty, and variability and unmodeled dynamics. As discussed
in the paper, we believe continuation methods can be used to in-
vestigate the robustness properties of the controller of interest. For
example, their use in Sec. VI to study the sensitivity of the con-
trol design process to parameter variation could equally have been
applied to parametric uncertainties. Nevertheless, we wish to em-
phasize here that the precise role that bifurcation analysis can play in
understanding and characterizing the robustness of a given control
strategy is still an open problem that is currently being debated in the
nonlinear dynamics and control community (for instance, Ref. 10)
and is, therefore, beyond the scope of the paper.

The paper is organized as follows. The objective and the design
approach are given in Sec. II. Section III contains descriptions of the
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control design and analysis methods. The aircraft model considered
is presented in Sec. IV. Open- and closed-loop bifurcation analysis
results are given in Sec. V. In Sec. VI, continuation is applied to
normalized control system parameters. Conclusions are given in
Sec. VIL

II. Objective and Design Approach

The objective is to find a set of commanded steady states that
have corresponding desired dynamic properties throughout a spec-
ified parameter range. We assume that desired steady states will be
equilibria (trim points). In the aircraft application considered here,
the desired equilibria are defined by a relationship between a mem-
ber of the state vector and an input parameter, that is, by prescribing
a projection of the bifurcation diagram, in this case angle of attack
o, vs desired reference input r. For simplicity, we choose r to be
commanded ¢, so that graphically this relates to a unique set of trim
points that have a linear relationship between the reference signal
and the « state. Note that the control systems used in this work are
not intended to be ideal solutions but have been selected to illustrate
the power of using continuation methods in control system design.

A scheduled feedforward term may be used alone to create a linear
relationship between the demanded reference signal and a chosen
system state. Although guaranteeing that the resulting system will
exhibit a desired set of equilibria, in general, these will not be stable
or unique. The bifurcation diagrams reported in our example will
show that this is indeed the case with the system exhibiting sev-
eral coexisting equilibria at the same parameter values. Hence, the
resulting demanded trim points are shown to exist without being
necessarily stable and, in the case in point, intersect with additional
undesired branches of equilibria.

Desired stability is obtained using closed-loop feedback control.
The scheduled feedforward term is augmented with a scheduled set
of feedback gains generated via a novel implementation of continu-
ation and eigenstructure algorithms. This implementation is shown
to result in a linear branch of trim points with the desired local
stability. Globally, however, simulation results and bifurcation di-
agrams for the HHIRM indicate the presence of an isola, a set of
of stable and unstable trim points (forming a closed branch in the
bifurcation diagrams) that influence the global transient response of
the augmented aircraft.

To illustrate graphically the origin of this isola, a further novel
implementation of continuation algorithms is made. The smooth
nonlinear functions of the control system gains are multiplied by
a scaling factor A, which is then used as the continuation param-
eter to generate a bifurcation or equilibrium surface. To generate
these results, it is necessary to recalculate the nonlinear feedfor-
ward function at each point in the continuation to create the desired
linear relationship between the reference input and the selected state.
The results show graphically the transition from open loop to closed
loop and identify the origin and evolution of the isola in the closed-
loop system as the feedback schedules are scaled in magnitude. This
provides a means of establishing the effect of changes in feedback
schedule on both the local eigenstructure and the global dynamics.

To remove the unwanted isola in the closed-loop system, an in-
tegral term is introduced, and the resulting closed-loop bifurcation
diagrams are shown to contain only the single stable desired branch.
Therefore, given sufficient control authority, it is shown to be pos-
sible to create a single stable attactor within the desired operating
region.

The methods described in this section are presented analytically
in the next section and form a logical, systematic approach to control
system design. They are shown to give insight into, and understand-
ing of, complex, highly nonlinear aircraft models.

III. Control System Design

A. Bifurcation Analysis

An introduction to the geometrical analysis of nonlinear systems
and bifurcations can be found, for example, by Strogatz.!! Crucially,
bifurcation analysis and bifurcation diagrams allow a global view
of nonlinear systems, which is not possible by simply analyzing the

system at a few given design points. This is important for many
engineering systems that operate over wide envelopes with highly
nonlinear regions. Two examples of such systems are aircraft and
chemical mixing processes.' =12

Consider the nonlinear system given by

x =f(x, u) x e, ued (1)
where x is the state vector and u is the control input of interest
(others considered fixed, with no loss of generality) and f is a smooth
nonlinear vector field.

Bifurcation analysis is carried out to find the open-loop equilibria
(or fixed points) x as the control input is varied quasi statically in a
range of interest, that is, solutions to

x=f@ u) =0, y=8x (@)
where x is the state equilibrium, not necessarily stable, correspond-
ing to input u. Bifurcation analysis often involves generating paths
of periodic orbit solutions, in addition to those of the fixed points;
these are not required for the purposes of this paper.

Given a suitable starting point, numerical continuation software
can be used to solve for a branch of equilibria as u is varied. The
information can be plotted graphically as a bifurcation diagram,'!
which is used to predict the global dynamics of the nonlinear system;
(for example, see Fig. 1).

Continuation methods make use of the implicit function
theorem,'® which implies that Eq. (2) defines implicitly a smooth
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nonlinear relationship between state and input, namely, X = 1(u).
Therefore, y can be expressed in terms of u as

y=yw 3)

where y relates to a single output and throughout this work to the
actual aircraft angle of attack. These functions can be created as a
set of discrete tabulated data by using continuation software such as
AUTO.!* Note that continuation methods can be used to solve for
equilibria of the system throughout the whole range of the control
input.

The implementation of continuation algorithms has been ex-
panded to incorporate the calculation of control system gains, using
eigenstructure assignment in this case, for every desired equilibrium
point as the continuation parameter is varied. In a smooth nonlin-
ear system, this results in a smooth set of nonlinear gain functions
that can be scheduled against a chosen parameter. Care needs to be
taken in the choice of this scheduling parameter to avoid introduc-
ing additional dynamics in the form of undesired hidden coupling
terms.

B. Control System Structure

Initially a control system will be considered that consists of two
elements.

The first is a nonlinear scheduled feedforward signal ug = ¢ (r)
such that there exists a (not necessarily unique or stable) set of
equilibria (x, y), throughout the desired range of r (the reference
input), where

)_7 =r vV re (rmirn rmax) (4)
which is a subset of the equilibria defined by
x=fGu)=0 &)

y=8x) (6)

The second element is a nonlinear feedback signal uy,, gain sched-
uled throughout the desired range of r, such that only the set of
equilibria described by Eq. (4) exists and that they are asymptoti-
cally stable and locally exhibit a desirable transient response. The
specific approach taken here is to assign the response in terms of
the eigenstructure of the system at equilibrium.

C. Feedforward Control

Figure 2 is a schematic block diagram showing a simple feedfor-
ward control system. In this case, the input to the plant is defined
as a nonlinear function of the reference input r. This control imple-
mentation allows an input-to-output relationship to be established
but cannot be used to define the stability of the resulting system.
To generate a set of output equilibria as a direct function of the
reference, considering Eq. (3), we choose

i=ug=y '(F)=¢F) )

where uy is the feedforward control signal as in Fig. 2. Substituting
Eq. (7) into Eq. (3) reveals that

y=y@=yly"'Ol=7 ®)

throughout the range of the reference, r. The equilibria formed at
y=r will not necessarily be stable or unique, depending on the
nature of the nonlinear function y. If y describes unstable equilib-
ria, then the feedforward controlled continuation will exhibit corre-
sponding unstable equilibria.

The method of finding the feedforward signal ug already de-
scribed relies on the open-loop function y (7) being invertible. Be-
cause the function y is found numerically using continuation soft-
ware, y is available as a set of data points along the branch of

r

Fig. 2 Feedforward control.

Fig. 3 State feedback plus feedforward control.

equilibria. The numerical inversion of y is achieved by simply in-
terpolating the data from y to u.

A problem arises if after continuation y is found to be a many-
to-one function, that is, more than one value for i corresponds to
many values of y. Here, the (numerical) inversion of y is impossible
because we cannot find one value of u to achieve a single desired
value of y. However, the inversion is possible if the function is one-
to-many, as will be demonstrated in the aircraft example in Sec. V.

The approach to take if y is many-to-one is to take the princi-
pal branch of the equilibria: using part of the numerical data for
the inversion at a time. This may require the implementation of a
piecewise approach to move between several different scheduled
areas of the bifurcation diagram, but such is the nature of nonlinear
systems it would be impossible to cover all of the possibilities here.
Suffice to say that a level of practicality would need to be employed
in the final controller design to ensure desired closed-loop system
behavior.

D. Feedforward and Feedback Control

Now we synthesize the control input « as consisting of two actions
(as in Sec. IIL.B and as shown in Fig. 3),

U= Ug+ Up (&)
A state feedback action is chosen of the form
up = Kpx (10)

We shall seek to schedule the gains Ky, by making explicit use of
continuation methods. In so doing, Ky, will be found as a function
of ug and in turn of r, allowing Ky, to be scheduled throughout the
flight envelope. The feedforward control us will then be synthesized
in terms of 7 in a similar manner to that described in the preceding
section.

Note that it is also possible to calculate the feedback gains to
operate on the state error (r — x), where r would be the full reference
vector, thus designing the controller about the equilibria already
defined by the feedforward control. If this is done, then there is
no need to recalculate the feedforward control term. The drawback
though is that there is an increase in the number of scheduled terms
required, including the full set of states at equilibrium, x.

For the results generated in this paper, the feedback gains operate
on the system state vector x. Even though this requires a recalcu-
lation of the feedforward function during the synthesis process, the
overall result is a reduced set of scheduled terms. These terms can
either be scheduled against the continuation parameter » (which
represents the stick position) and/or uncoupled states. Scheduling
against closely coupled terms (such as « and ¢) can result in hidden
coupling terms and undesired dynamics.

It is possible to account for some of these hidden coupling terms
and to schedule against closely coupled system states.'> The required
transformation relies on the smooth, continuous variation of the
gains with system states and results in a controller that is closer to
ideal for the current state of the system. For the purposes of this
paper, the feedback gains are scheduled against desired states and,
therefore, the reference input r.

E. Gain Scheduling

The standard approach to gain scheduling for a nonlinear system is
to take linearizations at several design points throughout the desired
operating region,

_Of(x,u)

of (x, u)
o ox +

ox o

Su (11)

i i
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where i represents the evaluation at the ith design point and éx and
Su are perturbations in the system from the design point.

A linear control strategy can be implemented using the lin-
earized system to achieve the desired closed-loop characteristics.
Gain scheduling is performed between the design points by interpo-
lating the gains to effect a smoothly varying set of gains throughout
the range of r.

Note that selecting suitable design points is not a trivial task. The
nature of wide parameter-varying nonlinear systems is such that
between design points the system dynamics may vary significantly
and, thus, have a detrimental effect on the closed-loop response.

F. Pseudocontinuous Gain Scheduling
To select a set of feedback gains Ky, that guarantees the desired
closed-loop dynamic properties, eigenstructure assignment was in-
tegrated within the continuation algorithm. This novel implementa-
tion of eigenstructure assignment places the closed-loop poles of the
linearized system during continuation and along the entire branch
of equilibria.
From Eq. (2) the controlled system is given by
x = f(x, ug + Knx) = h(x, ugr, K,), y=gx (12
The eigenstructure assignment and calculation of the equilibria are
carried out at the same time by applying continuation to the fol-
lowing set of equations (using ug as the continuation parameter).
Continuation can be just as easily carried out letting y = r and using
r as the continuation parameter. This would solve for the feedfor-
ward control ug and the feedback gain Ky, in one step. The process
is laid out in two steps here for clarity,
h(x, ug, Kp) = 0, (A — BKp)v! =X (13)
where A and B relate to the linearized system at each step in the
iteration and are defined by

_ of (x, u) B— f (x, u)

A
ox Oou

14)

and the eigenstructure is assigned through the set of n self-conjugate
distinct desired complex eigenvalues of the linearized closed-loop
system, AY, i =1,2,...,n, and the n distinct desired eigenvectors
of the linearized closed-loop system, vj.’, i=1,2,...,n.

Note that even if there is a solution to the eigenstructure problem
the solution has to be interpreted in light of the real-life nonlinear
application. For example, large gains will lead to actuator and control
surface saturation. From Eq. (13), the implicit function theorem
allows us to express the output equilibria and scheduled feedback
gains as

y = ¢(us) (15)
Ky, = ¥ (uy) (16)

which can be found numerically using continuation software such
as AUTO.

Note that this approach is fundamentally different from conven-
tional eigenstructure assignment,'® where the method is used to
place the eigenvalues of the linearized system around a predeter-
mined finite set of operating conditions. This traditional gridded
approach can give rise to difficulties when, for example, the nonlin-
ear system changes topological form between the selected points via
a fold bifurcation: The designer does not have a clear understand-
ing of the evolution of underlying system behavior as parameters
vary. Problems may then be encountered in trimming the system,
and the control solution, if achieved, may differ substantially from
that at a neighboring design point. In this novel approach, however,
the eigenstructure assignment is carried out within the continuation
algorithm and during iteration for the equilibria, thus overcoming
some of these difficulties.

G. Feedforward Schedule

Feedback control as given in the preceding section is used to alter
the dynamic properties of the closed-loop system, and feedforward
control is used to generate a desired relationship between the refer-
ence input and output of the system.

We can now design the feedforward action from Eq. (15). As in
Sec. III.C for designing ug in the absence of feedback control, we
define the nonlinear feedforward schedule as

ug =¢~'(7) an

to ensure that y = ¢[¢~! (¥)] = 7. Therefore, from Egs. (16) and (9),
the complete control strategy will be

Ky = o™ (P)] (18)
u=¢ ' +Ylp~ (x (19)
IV. HHIRM Aircraft Model

The HHIRM® was created to provide a benchmark for nonlin-
ear analysis and control design. The aerodynamic characteristics of
the HHIRM are very similar to those of many existing combat air-
craft and can be easily tuned to arbitrarily chosen characteristics for
qualitative nonlinear dynamics analysis and control law design.

The HHIRM is ideal for research into control law design because
the aerodynamic and thrust models are based entirely on analytical
functions of aircraft parameters. All of these functions are smooth,
and therefore, it is implicit that within the specified control surface
limits the model may be highly nonlinear but remains smooth. The
use of mathematical functions instead of large unwieldy aerody-
namic tables means that the resulting computer code for the entire
model is far smaller and faster to run. A second-order implementa-
tion of the HHIRM is used in this paper to illustrate the methodology;
it describes the approximate short-period longitudinal dynamics

& = q + Zy (e, u)/mVr, g=M@uw/l, (20

where

o = angle of attack

q = body axis pitch rate

u = system input (elevator deflection)
m = mass

Vr = total velocity

I,, = ybody axis moment of inertia

M (o, u) and Z, (o, u) are the body axis pitching moment and
force normal to the wind axis respectively, due to the aerodynamics,
thrust, and gravity.

The difficulty in the control of the HHIRM arises from the highly
nonlinear aerodynamic forces and moments that exist at high angles
of attack. These are evident even in this simple reduced version of
the model in the form of multiple attractors at certain values of u.

Several different aircraft control configurations can be used such
as pitch rate or normal acceleration demand systems. For simplic-
ity, in this paper, an o demand system is used throughout; in the
following examples, o will be taken as the controlled output.

The control objective is for the aircraft to exhibit a steady-state
value (&, g) characterized by @ = 7. Moreover, the aircraft must also
achieve level-1 short-period handling qualities, which can be shown
to be associated with eigenvalues of the system Jacobian matrix (see
Refs. 17 and 18). We choose the desired eigenvalues to be

A =-20+20j (1)

V. Initial Results

A. Baseline Aircraft Analysis

The steady-state values of « and ¢ were found for the baseline
HHIRM under variation of the control input u, the elevator, that is,
using the continuation methods described in Sec. IIL.A to solve for
equilibria with u as the continuation parameter.
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Fig. 5 HHIRM open- and closed-loop eigenvalues.

Figure 1 shows the equilibria set for both « (Fig. 1a) and ¢
(Fig. 1b) against the continuation parameter u. The single branch has
two folds at (&, u) = (33.8, —19.8), (45.5, —9.5) deg, where a sin-
gle real eigenvalue crosses the imaginary axis. The folds correspond
to the onset of a family of unstable equilibria where the aircraft ex-
periences a loss of pitch stiffness. This is verified by reference to
the variation of C,, with « in Fig. 4: Static stability (C,,, <0) is
lost at o =33.8 deg, corresponding to the first fold in the bifurca-
tion diagram and associated loss of stability; it is then regained at
a =45.5 deg, giving rise to the second fold and the ensuing asymp-
totically stable deep stall situation evident up to « ~ 60 deg. Note
that the two folds cause a hysteresis effect: The pilot can switch be-
tween the low-to-moderate incidence stable behavior and the very
high incidence stable branch, but only by moving the elevator past
the relevant critical value for each fold.

The set of equilibria for the controlled output, &, along the branch
can be expressed numerically as a nonlinear function of the control
input u,

o = Yac(t) (22)

The corresponding eigenvalues of the Jacobian matrix of the open-
loop system are given in Fig. 5. They show that, even where the
aircraft is stable, the system exhibits undesirable longitudinal han-
dling qualities in terms of damping ratio and undamped natural
frequency.

Carrying out bifurcation analysis of the uncontrolled system in
this way generates a wealth of useful information on the behavior of
the system, which in turn can help the controller design, especially
in high-order asymmetric systems with multiple solution branches
and changes in stability.

B. Feedforward Control
To demonstrate graphically the effect of feedforward control
alone, the system is modified by substituting

Ug = )/azl (r) (23)

into Eq. (20), and Fig. 6 shows the numerical function y,'.
Figure 7 contains the bifurcation plots for the HHIRM with feed-
forward control. In this case,  is used as the continuation parameter.
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Fig. 7 Bifurcation diagrams: aircraft with feedforward control.
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Fig. 8 HHIRM response under feedforward control: a) 15-deg step in
r and b) 40-deg step in r.

Note that the reference set of equilibria @ =7 exists; however, there
is an unstable section in the branch and there are coexisting branches
of equilibria linked to the desired branch at two transcritical bifur-
cations. Note also that the unstable equilibria correspond to the
unstable region in Fig. 1 (33.8 <a < 45.5 deg).

Figure 8 shows the response of the HHIRM to two step changes
in the input r, starting at » = 0. The response to a 15-deg step set-
tles down onto the desired equilibrium; however, the response to the
40-deg step demand settles onto a coexisting equilibrium (whose ex-
istence is predicted in the feedforward bifurcation diagram, Fig. 7).
In both cases, the system is underdamped, and the dynamic response
is highly undesirable.

The implication is that feedback control should be used to address
these issues, that is, to 1) stabilize the unstable branch, 2) improve
the transient response, and 3) suppress the coexisting attractors or re-
duce their basins of attraction. This latter task would be particularly
important because the presence of coexisting attractors will under-
mine the control robustness to unwanted perturbations and noise.
Thus, it would be desirable, once coexisting attractors have been
located via bifurcation analysis, to be able to assess their regions of
attraction. This is still an open problem in nonlinear dynamics and,
currently, only heuristic or brute force numerical methods can be
used for such an estimation. For example, cell-mapping methods'’
can be used to estimate numerically the basin of attraction of a
given solution but were found to give inaccurate results for high-
dimensional dynamical systems or in the case of many coexisting
attractors. A detailed analysis of the regions of attraction is currently
under development but is beyond the scope of this paper.

C. Feedforward and Feedback Control
The feedforward and feedback control signal is given by:

u=ug+ Ky + Kyq 24

When uy is used as the continuation parameter, eigenstructure as-
signment is carried out within the continuation algorithm; thus, the
numerical information for the output « and gains K, and K, may
be expressed as

@ = Puc(usr) (25)
K, = d’aca (uff) (26)
Ky = W0, (i) 27

As in the preceding section, the feedforward schedule is now formed
as ug = ¢ (F), and it is shown in Fig. 9.
The feedback gains can, therefore, be constructed as

Ko =, [¢a ()] (28)
Ky =, [¢0 ()] (29)

InFig. 10, the two gains K, and K, have been plotted against r. The
gain that remains relatively constant is K, and the second, which
demonstrates highly nonlinear behavior at high r (corresponding
to high «), is K,. This is as expected due to the response of the
baseline aircraft being linear at low angles of attack and substantially
nonlinear at higher incidence, in particular for o between 30 and
50 deg (Figs. 1 and 4).
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tions of r.
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The bifurcation diagrams for the closed-loop system using the
reference r as the continuation parameter are shown in Fig. 11. A
branch can be seen denoting the desired linear relationship between
r and «. The branch is stable; however, it is not unique. A small,
isolated set of equilibria can be seen consisting of both stable and
unstable equilibrium points. The existence of this set of unwanted
equilibria demonstrates that a local control strategy can have global
effects on the nonlinear system.

The bifurcation diagram defines the equilibria of the system, and
as such, the eigenvalues relate to the trimmed (equilibrium) state of
the aircraft.

In designing the controllers for this paper, feedback gains were
only calculated at the trim points that satisfied the control require-
ment where o =r. When only a feedforward term and feedback
gains on the system states are used, additional attractors, stable and
unstable, can still exist away from the desired branch. The implica-
tion is that the stability region around the desired branch of equilibria
may be reduced in size, at least for some input values, to an extent
that renders unacceptable behavior when transient responses take
the system away from the local neighborhood of the desired equi-
libria. This type of control system cannot guarantee that the desired
trim branch is unique.

The significant advantage shown here of using bifurcation anal-
ysis and continuation in the controller design is that the resulting
global dynamics due to a locally designed controller can be inves-
tigated and assessed early in the design phase.

The closed-loop eigenvalues are shown in Fig. 5 for the desired
stable branch over the o range 0-60 deg. These show that, as well as
remaining stable, the aircraft model will exhibit the required level-1

handling qualities at every point on the desired set of equilibria.
As mentioned, the response away from this trim branch for which
the controller was designed will differ from the desired dynamics.
This can be seen immediately by considering the effect of the isola,
which consists of both stable and unstable equilibria.

Figure 12 shows the closed-loop HHIRM response to step changes
in r with both the feedforward and the feedback schedules. Given
a 15-deg step in r (Fig. 12a), the response in the output « is as
predicted by the desired eigenvalues, that is, a damping ratio of
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Fig. 12 HHIRM step response under feedforward and feedback con-
trol: a) 15-deg step, b) 50-deg step, and c) 60-deg step.
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approximately 0.707, giving a single overshoot, and a settling time
of approximately 2 s. This desired response is a reflection of the
relatively linear region over which the step demand is made.

A step demand of 50 deg in r (Fig. 12b) places the system into
the region of attraction created by the additional attractors shown
in Fig. 11. This time, the aircraft settles onto the undesired stable
attractor at o = 32.2 deg, rather than the desired equilibrium lying
at o =50 deg.

Furthermore, given a step input of r =60 deg, even when the
system does not end up on an undesired equilibria the trajectory
in « clearly shows the influence of the extra attractor, despite there
only being the one (desired) equilibria set in the system at 7 = 60 deg
(Fig. 11). Thus, the isolated equilibria can be linked to changes in the
global dynamic response and are shown to influence the trajectories
in the surrounding state space.

VI. Bifurcation Surface Plots

Continuation methods as tools for control design can be extended
to assess the effect that variation of the controller gains has on the
closed-loop system. The controller gains themselves can be used as
continuation parameters to map out a surface of equilibria from the
open-loop to the closed-loop bifurcation diagram. Namely, we can
assess the effect of varying the gains of a state feedback controller
of the form u = Kg,x.

Several surfaces could be made in terms of variation of each
feedback gain individually. In this case, however, to demonstrate the
technique we vary all of the gains simultaneously by introducing a
new continuation parameter A and defining the feedback control as

u = AKpx (30)

where Ky, is fixed as the set of controller gains designed using the
eigenstructure assignment methods from the preceding section. In
effect, A is a weight coefficient on the controller gains, or feedback
scale factor: A =0 indicates no feedback, that is, the open-loop
system and A =1 implies full feedback as designed using eigen-
structure assignment.

Continuation is then carried out using A as the continuation pa-
rameter. Figure 13 shows the surface of equilibria for the second-
order HHIRM model, with 0 < A < 1. Exporting the data from the
numerical continuation software (AUTO) to MATLAB® enables the
surface to be easily manipulated as a three-dimensional plot.

In Fig. 13a, the flat surface corresponding to the desired set of
equilibria at @ =7 can clearly be seen to exist for all values of
A. This is as predicted in Sec. III.C: The feedforward term in the
control ensures the existence of equilibria at & = 7 regardless of the
feedback control. As shown earlier, though, these equilibria are not
necessarily stable or unique.

The evolution of the surface as A increases can be seen more
clearly in the contour plot of the surface (Fig. 13b). The loci of
equilibria other than the @ =r surface gradually reduce in size as
A increases. From the open-loop system, the additional branches
shrink as the influence of the feedback gains increases.

The unstable section of the desired trim branch also decreases
as A increases until on either side of this main trim branch the two
isola are formed. The isola above the desired trim branch in Fig. 13b
disappears completely before A reaches 1.

Moreover, the surface confirms the existence of the additional
equilibria shown in Fig. 11. These equilibria correspond to a peak
in the surface of Fig. 13b persisting up to A = 1. This is more easily
seen in Fig. 13c, the view parallel to the flat surface where o =7r.
The significance of this peak is that, although the controller ensures
a desired eigenstructure along a set of desired equilibria, it does not
necessarily eliminate all unwanted equilibria.

The implication of this set of results is that the use of continuation
methods in both design and analysis stages allows the global im-
plications of a local controller to be identified. Hence, continuation
methods can provide some measure of robustness of the control strat-
egy under investigation. Specifically, bifurcation analysis can shed
light on those topological changes in the system that may otherwise
not be fully understood when using a more traditional approach to
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Fig. 13 Surface of equilibria for feedforward and feedback system:
from zero feedback control (A =0) to the full feedback control using
gains designed using eigenstructure assignment (A =1).

control system design. For example, when the existence and origin
of the undesired isola have been identified, it is possible to take the
analysis one stage further and to find the demands that need to be
placed on this existing controller to obtain a single stable attractor.
This can be done, as will be shown, by using A as the continua-
tion parameter and finding the limit of the peak identified in the
three-dimensional plot. The role that bifurcation analysis can play
in control system design is currently the subject of much ongoing
research (for instance, Ref. 10).
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Fig. 15 Bifurcation digram: A =continuation parameter.

A. Continuation with A

We start by taking a point roughly at the center of the unwanted
isola, « =35 deg; r is fixed at 51 deg. The continuation algorithm
is set up to find steady states in @ and ¢. To do this, ug has to be
calculated at each point in the iteration.

Figure 14 shows the change that must be made to the system to use
A as the continuation parameter. A constant value of u is selected
that matches with the value of « at 51 deg. Given this value for u
and the fact that the desired trim point is constant with « and ¢, then
the feedback term varies only with A and it is possible to simplify
the equation to give ug in terms of only A. Therefore uy;, the input
signal, is given by

ugp =u" + A(K;‘a* + K;‘q*) G

where the asterisk denotes the value at the desired equilibria. The
bifurcation diagram is shown in Fig. 15 and consists of two branches.
A single, stable, horizontal branch is shown that corresponds to
the desired set of equilibria at « =51 deg. The second branch has
varying « and corresponds to the undesired isola shown in the earlier
results. When this section is used, through the three-dimensional
plots it is possible to indentify the limit of the isola (which arises
via a fold bifurcation) and the values of A for which only the single
desired attractor exists in the region under investigation.

From these results it can be seen that using A = 1.2 would give
a system where only the single stable attractor would exist. An
alternative to the continuation given here would be to carry out a
local optimization in terms of r and « that would find the true local
maximum of A. For the purposes of this paper, however, the results
given by this continuation are sufficient to find a value of A that
would give a single stable attractor. (An optimization approach has
the disadvantage that it provides no insight into topological changes
as the feedback scale factor varies.)

Figure 16 shows the eigenvalues for the closed-loop system with
a single attractor between o =0 and o = 60 deg, with A = 1.2. The
resulting eigenvalues are no longer fixed over the « range, but have
been moved to the left. The controller designer is now in a position
to carry out a trade study between a system displaying ideal local
equilibria with transient dynamics affected by the isola, or a system
with compromised eigenstructure but benefitting from an enlarged
stability region of the desired equilibria and, hence, no isola. In fact,
in the HHIRM example, the damping and frequency of the system
at A = 1.2 remain in the level-1 handling qualities range: It would
be possible to redesign the controller with eigenvalues fixed in this
region of the complex plane (instead of at —2 42 ), which would
also result in the isola being removed.
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Fig. 16 Eigenvalues with A =1.2.
Fig. 17 Output feedback plus integral control.
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Fig. 18 Bifurcation diagram: closed-loop HHIRM with integral
control.

B. Feedback Plus Integral Control

Figure 17 is a block diagram in which feedback control is used to
alter the dynamic properties of the closed-loop system and integral
control is used to generate a demanded response through the use of
an outer demand loop. This configuration is more robust to changes
in plant parameters and is an alternative method for removing the
undesired isola.

Theoretically, assuming unlimited control power for the HHIRM
and using the control structure shown in Fig. 17, only the single
desired set of equilibria can exist. A note of caution must be added
though because, even though there may not be a second stable attrac-
tor within the envelope considered, the region of attraction for the
desired equilibria is not guaranteed to be global. A trajectory may
exist that would take the system outside of the desired envelope,
where the system may no longer be controllable.

Figure 18 is the bifurcation diagram for the gain-scheduled sys-
tem with integral control. It is clear that only the desired stable set
of equilibria exists, and the undesired isola is no longer present.
Control surface position limits are not considered here, but the
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Fig. 19 Response of HHIRM with integral control to step of 50 deg
inr.

continuation-based approach can also accommodate control surface
saturation.?

As a result of the apparently unique equilibria branch in Fig. 18,
it would be reasonable to expect a large stability region and, hence,
that transient dynamics would show an improved response relative
to that for the feedback plus feedforward control.

Figure 19 is the response of the closed-loop system to a step
change in the reference » of 50 deg. This is a great improvement
over the corresponding response shown in Fig. 12 with the system
coming to rest at the desired 50 deg with dynamics corresponding
to eigenvalues lying at —2 2 ;. The undesired isola is no longer
present and, therefore, cannot have an effect on the surrounding
phase space and transient response.

VII. Conclusions

A novel technique using continuation methods was presented in
which surfaces of equilibria were formed for a highly nonlinear air-
craft dynamic system with feedforward- and feedback-scheduled
controller. Synthesis of the controller gains was embedded within
the continuation method. The equilibrium surfaces were displayed
graphically in terms of the controller gain variation and the refer-
ence signal. This allowed easy visualization of the effect of chang-
ing the control gains and the resulting global implications of the
locally designed control strategy. Results were shown to include
undesired attractors and transient responses. Where large parame-
ter/input variations are involved in a nonlinear system, local analysis
of controllers may prove insufficient. The technique presented here
provides a tool to aid the understanding of the global dynamics and
allows global stability to enter the controller design studies.

These results show that there is great benefit in a logical and
practical approach to control system design that helps to evaluate
the global implications of a locally designed controller. The combi-
nation of gain-scheduled control with nonlinear analysis methods is
demonstrated to be a practical way of addressing complex problems
of this type.
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